Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Dynamic Ptychography
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Dynamic Fourier Ptychography with Deep Spatiotemporal Priors

P. Bohra, T.-a. Pham, Y. Long, J. Yoo, M. Unser

Inverse Problems, vol. 39, no. 6, paper no. 064005, June 2023.


Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of high-resolution images of a moving sample. There, the application of standard frame-by-frame reconstruction methods limits the temporal resolution due to the large number of measurements that must be acquired for each frame. In this work instead, we propose a neural-network-based reconstruction framework for dynamic FP. Specifically, each reconstructed image in the sequence is the output of a shared deep convolutional network fed with an input vector that lies on a one-dimensional manifold that encodes time. We then optimize the parameters of the network to fit the acquired measurements. The architecture of the network and the constraints on the input vectors impose a spatiotemporal regularization on the sequence of images. This enables our method to achieve high temporal resolution without compromising the spatial resolution. The proposed framework does not require training data. It also recovers the pupil function of the microscope. Through numerical experiments, we show that our framework paves the way for high-quality ultrafast FP.

Supplementary material for this article is available online.

@ARTICLE(http://bigwww.epfl.ch/publications/bohra2301.html,
AUTHOR="Bohra, P. and Pham, T.-a. and Long, Y. and Yoo, J. and Unser,
	M.",
TITLE="Dynamic {F}ourier Ptychography with Deep Spatiotemporal Priors",
JOURNAL="Inverse Problems",
YEAR="2023",
volume="39",
number="6",
pages="",
month="June",
note="paper no.\ 064005")

© 2023 The Authors. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from The Authors. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved