Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Generalized Sampling
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Shortest Multi-Spline Bases for Generalized Sampling

A. Goujon

Online Seminars on Numerical Approximation and Applications (OSNA2'20), Passau, Federal Republic of Germany, Virtual, November 9-December 3, 2020.


Generalized sampling consists in recovering a function from the samples of its response to a collection of linear shift-invariant systems. The reconstructed function is typically picked from a finitely generated shift-invariant space that can reproduce polynomials up to a given degree M. While this property guarantees an approximation power of order (M + 1), it comes with a tradeoff on the size of the support of the basis functions. Specifically, we prove that the sum of the supports of the generators is necessarily greater or equal to (M + 1). Following this result, we introduce the notion of shortest basis of degree M, which is motivated by our desire to minimize computational cost. We then demonstrate that any shortest support basis generates a Riesz basis. Finally, we introduce a recursive algorithm for the construction of the shortest support basis for any multi-spline space. It constitutes a generalization of both polynomial and Hermite B-splines. This framework paves the way for novel applications, such as fast derivative sampling with arbitrarily high approximation power.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/goujon2001.html,
AUTHOR="Goujon, A.",
TITLE="Shortest Multi-Spline Bases for Generalized Sampling",
BOOKTITLE="Online Seminars on Numerical Approximation and Applications
	({OSNA2'20})",
YEAR="2020",
editor="",
volume="",
series="",
pages="",
address="Passau, Federal Republic of Germany, Virtual",
month="November 9-December 3,",
organization="",
publisher="",
note="")
© 2020 OSNA2. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from OSNA2. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved