Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  CPWL Parameterization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Stable Parameterization of Continuous and Piecewise-Linear Functions

A. Goujon, J. Campos, M. Unser

Applied and Computational Harmonic Analysis, vol. 67, paper no. 101581, 27 p., January 2023.


Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function spaces lacks stability. In this paper, we investigate an alternative representation of CPWL functions that relies on local hat basis functions and that is applicable to low-dimensional regression problems. It is predicated on the fact that any CPWL function can be specified by a triangulation and its values at the grid points. We give the necessary and sufficient condition on the triangulation (in any number of dimensions and with any number of vertices) for the hat functions to form a Riesz basis, which ensures that the link between the parameters and the corresponding CPWL function is stable and unique. In addition, we provide an estimate of the ℓ2 → L2 condition number of this local representation. As a special case of our framework, we focus on a systematic parameterization of ℝd with control points placed on a uniform grid. In particular, we choose hat basis functions that are shifted replicas of a single linear box spline. In this setting, we prove that our general estimate of the condition number is exact. We also relate the local representation to a nonlocal one based on shifts of a causal ReLU-like function. Finally, we indicate how to efficiently estimate the Lipschitz constant of the CPWL mapping.

@ARTICLE(http://bigwww.epfl.ch/publications/goujon2302.html,
AUTHOR="Goujon, A. and Campos, J. and Unser, M.",
TITLE="Stable Parameterization of Continuous and Piecewise-Linear
	Functions",
JOURNAL="Applied and Computational Harmonic Analysis",
YEAR="2023",
volume="67",
number="",
pages="",
month="January",
note="paper no.\ 101581")

© 2023 The Authors. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from The Authors. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved