Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  OPT Calibration
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Mechanical Artifacts in Optical Projection Tomography: Classification and Automatic Calibration

Y. Liu

International Symposium on Computational Sensing (ISCS'23), Luxembourg, Grand Duchy of Luxembourg, June 12-14, 2023.


Optical projection tomography (OPT) is a powerful tool for biomedical studies. It achieves 3D visualization of mesoscopic biological samples with high spatial resolution using conventional tomographic-reconstruction algorithms. However, various artifacts degrade the quality of the reconstructed images due to experimental imperfections in the OPT instruments. While many efforts have been made to characterize and correct for these artifacts, they focus on one specific type of artifacts. This work has two contributions. First, we systematically document a catalog of mechanical artifacts based on a 3D description of the imaging system that uses a set of angular and translational parameters. Then, we introduce a calibration algorithm that recovers the unknown system parameters fed into the final 3D iterative reconstruction algorithm for a distortion-free volumetric image. Simulations with beads data and experimental results on a fluorescent textile fiber confirm that our algorithm successfully removes miscalibration artifacts in the reconstruction.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/liu2301.html,
AUTHOR="Liu, Y.",
TITLE="Mechanical Artifacts in Optical Projection Tomography:
	{C}lassification and Automatic Calibration",
BOOKTITLE="International Symposium on Computational Sensing
	({ISCS'23})",
YEAR="2023",
editor="",
volume="",
series="",
pages="",
address="Luxembourg, Grand Duchy of Luxembourg",
month="June 12-14,",
organization="",
publisher="",
note="")
© 2023 ISCS. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from ISCS. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved