Optimization of Mutual Information for Multiresolution Image Registration
P. Thévenaz, M. Unser
IEEE Transactions on Image Processing, vol. 9, no. 12, pp. 2083–2099, December 2000.
We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of spline-processing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers.
Erratum
-
p. 2085, second column, third line, the numeric value for S is incorrect. It should read S ≅ −0.811 instead of S ≅ −0.865.
@ARTICLE(http://bigwww.epfl.ch/publications/thevenaz0003.html, AUTHOR="Th{\'{e}}venaz, P. and Unser, M.", TITLE="Optimization of Mutual Information for Multiresolution Image Registration", JOURNAL="{IEEE} Transactions on Image Processing", YEAR="2000", volume="9", number="12", pages="2083--2099", month="December", note="")