Self-Similarity: Part I—Splines and Operators
M. Unser, T. Blu
IEEE Transactions on Signal Processing, vol. 55, no. 4, pp. 1352–1363, April 2007.
The central theme of this pair of papers (Parts I and II in this issue) is self-similarity, which is used as a bridge for connecting splines and fractals. The first part of the investigation is deterministic, and the context is that of L-splines; these are defined in the following terms: s(t) is a cardinal L-spline iff L{s(t)} = ∑k∈Z a[k] δ(t−k), where L is a suitable pseudodifferential operator. Our starting point for the construction of “self-similar” splines is the identification of the class of differential operators L that are both translation and scale invariant. This results into a two-parameter family of generalized fractional derivatives, ∂τγ, where γ is the order of the derivative and τ is an additional phase factor. We specify the corresponding L-splines, which yield an extended class of fractional splines. The operator ∂τγ is used to define a scale-invariant energy measure—the squared L2-norm of the γth derivative of the signal—which provides a regularization functional for interpolating or fitting the noisy samples of a signal. We prove that the corresponding variational (or smoothing) spline estimator is a cardinal fractional spline of order 2γ, which admits a stable representation in a B-spline basis. We characterize the equivalent frequency response of the estimator and show that it closely matches that of a classical Butterworth filter of order 2γ. We also establish a formal link between the regularization parameter λ and the cutoff frequency of the smoothing spline filter: ω0 ≅ λ−2γ. Finally, we present an efficient computational solution to the fractional smoothing spline problem: It uses the fast Fourier transform and takes advantage of the multiresolution properties of the underlying basis functions.
Please consult also the companion paper by T. Blu, M. Unser, "Self-Similarity: Part II—Optimal Estimation of Fractal Processes," IEEE Transactions on Signal Processing, vol. 55, no. 4, pp. 1364-1378, April 2007.
@ARTICLE(http://bigwww.epfl.ch/publications/unser0701.html, AUTHOR="Unser, M. and Blu, T.", TITLE="Self-Similarity: {P}art {I}---{S}plines and Operators", JOURNAL="{IEEE} Transactions on Signal Processing", YEAR="2007", volume="55", number="4", pages="1352--1363", month="April", note="")