Splines and Machine Learning: From Classical RKHS Methods to Deep Neural Nets
M. Unser
Keynote address, IEEE International Workshop on Machine Learning for Signal Processing (MLSP'20), Espoo, Republic of Finland, Virtual, September 21-24, 2020.
Supervised learning is a fundamentally ill-posed problem. In practice, this indetermination is dealt with by imposing constraints on the solution; these are either implicit, as in neural networks, or explicit via the use of a regularization functional. In this talk, I present a unifying perspective that revolves around a new representer theorem that characterizes the solution of a broad class of functional optimization problems. I then use this theorem to derive the most prominent classical algorithms—e.g., kernel-based techniques and smoothing splines—as well as their "sparse" counterparts. This leads to the identification of sparse adaptive splines, which have some remarkable properties.
I then show how the latter can be integrated in conventional neural architectures to yield high-dimensional adaptive linear splines. Finally, I recover deep neural nets with ReLU activations as a particular case.
@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser2003.html, AUTHOR="Unser, M.", TITLE="Splines and Machine Learning: {F}rom Classical {RKHS} Methods to Deep Neural Nets", BOOKTITLE="{IEEE} International Workshop on Machine Learning for Signal Processing ({MLSP'20})", YEAR="2020", editor="", volume="", series="", pages="", address="Espoo, Republic of Finland, Virtual", month="September 21-24,", organization="", publisher="", note="Keynote address")