Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  1-Bit Compressed Imaging
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

1-Bit Compressed Imaging

Mathematical Imaging

Principal Investigator: Aurélien Bourquard

(A) Acquisition of House obtained through our model along with (B) the corresponding reconstruction.

Summary

Based on the compressed-sensing (CS) theory, we propose an efficient approach to acquire images in a compressed binary form, and propose the reconstruction algorithm that is optimized for this type of data. Our global strategy relies on

Introduction

Compressed sensing is a recent paradigm that allows one to substantially reduce the amount of data to be acquired as compared to conventional sampling strategies. The key principle is to compress the information before it is captured, which is especially beneficial when the acquisition process is expensive in terms of time or hardware. In this project, we reduce the amount of image data by quantizing measurements to one single bit per pixel. The original image is then recovered through numerical reconstruction using an appropriate algorithm.

Main Contribution

We propose a new technique to acquire images in compressed form. Our forward model is physically realistic, and produces binary measurements through random convolution (as introduced by J. Romberg) followed by 1-bit quantization. Adapting the 1-bit CS paradigm introduced by P. Boufounos to our model, and making it suitable for convex optimization, we have developed an efficient reconstruction algorithm that only involves fast Fourier transforms. Our current research deals with an improved setting where the compressed data consists in a set of several such acquisitions.


Collaboration: Michael Unser

Period: 2008-ongoing

Funding: Grant application pending

Major Publications

  • , , , Optical Imaging Using Binary Sensors, Optics Express, vol. 18, no. 5, pp. 4876–4888, March 1, 2010.
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved