Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Fluorescence Diffuse Optical Tomography
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Fluorescence Diffuse Optical Tomography

Medical Imaging
Mathematical Imaging

Principal Investigator: Jean-Charles Baritaux


Summary

This work is on developing numerical reconstruction methods for free-space fluorescence diffuse optical tomography, using efficient regularization policies.

Introduction

The goal in fluorescence diffuse optical tomography (FDOT) is to reconstruct the distribution of fluorescent markers inside tissue based on boundary light measurements. The challenge is to invert the diffuse nature of light in biological tissue. This a non-invasive imaging technique applicable, for instance, to cancer detection or small animal imaging in drug development.

Main Contribution

We have developed an integrated framework based of the finite-elements method which combines a forward model and a reconstruction scheme. We are investigating sparsity-promoting regularization techniques, which yield better reconstruction quality than standard linear techniques. Our research also covers the improvement of the data acquisition scheme, and the incorporation of a priori knowledge from other imaging modalities.


Collaborations: Prof. Michael Unser, Kai Hassler (SCANCO Medical)

Period: 2007-ongoing

Funding: CTI grant with SCANCO Medical

Major Publications

  • , , , A Spline-Based Forward Model for Optical Diffuse Tomography, Proceedings of the Fifth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'08), Paris, French Republic, May 14-17, 2008, pp. 384–387.
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved