Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  TV Regularization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Second-Order Extension of TV Regularization for Image Deblurring

Z. Dogan, S. Lefkimmiatis, A. Bourquard, M. Unser

Proceedings of the 2011 Eighteenth IEEE International Conference on Image Processing (ICIP'11), Brussels, Kingdom of Belgium, September 11-14, 2011, pp. 713-716.


In this paper, we propose a novel second-order regularizer based on the maximum response of the second-order directional derivative, assuming that the image under consideration belongs to the class of piecewise-linear signals. Compared to total-variation regularization that preserves edges but transforms piecewise-smooth regions into piecewise-constant regions, the proposed model is able to restore piecewise-linear regions and finer details. Deconvolution experiments demonstrate the performance of our approach in terms of the quality of reconstruction.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/dogan1101.html,
AUTHOR="Dogan, Z. and Lefkimmiatis, S. and Bourquard, A. and Unser, M.",
TITLE="A Second-Order Extension of {TV} Regularization for Image
	Deblurring",
BOOKTITLE="Proceedings of the 2011 Eighteenth {IEEE} International
	Conference on Image Processing ({ICIP'11})",
YEAR="2011",
editor="",
volume="",
series="",
pages="713--716",
address="Brussels, Kingdom of Belgium",
month="September 11-14,",
organization="",
publisher="",
note="")

© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved