Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Characteristic Functionals
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling

J. Fageot, A. Amini, M. Unser

The Journal of Fourier Analysis and Applications, vol. 20, no. 6, pp. 1179-1211, December 2014.


The characteristic functional is the infinite-dimensional generalization of the Fourier transform for measures on function spaces. It characterizes the statistical law of the associated stochastic process in the same way as a characteristic function specifies the probability distribution of its corresponding random variable. Our goal in this work is to lay the foundations of the innovation model, a (possibly) non-Gaussian probabilistic model for sparse signals. This is achieved by using the characteristic functional to specify sparse stochastic processes that are defined as linear transformations of general continuous-domain white Lévy noises (also called innovation processes). We prove the existence of a broad class of sparse processes by using the Minlos-Bochner theorem. This requires a careful study of the regularity properties, especially the Lp-boundedness, of the characteristic functional of the innovations. We are especially interested in the functionals that are only defined for p < 1 since they appear to be associated with the sparser kind of processes. Finally, we apply our main theorem of existence to two specific subclasses of processes with specific invariance properties.

@ARTICLE(http://bigwww.epfl.ch/publications/fageot1401.html,
AUTHOR="Fageot, J. and Amini, A. and Unser, M.",
TITLE="On the Continuity of Characteristic Functionals and Sparse
	Stochastic Modeling",
JOURNAL="The Journal of {F}ourier Analysis and Applications",
YEAR="2014",
volume="20",
number="6",
pages="1179--1211",
month="December",
note="")

© 2014 Birkhäuser. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Birkhäuser. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved