Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Intracellular Elasticity
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Probing Intracellular Elasticity with Minimal-Hessian Registration

Y. Kesenci, A. Boquet-Pujadas, M. Unser, J.-C. Olivo-Marin

Proceedings of the Twentieth IEEE International Symposium on Biomedical Imaging (ISBI'23), Cartagena de Indias, Republic of Colombia, April 18-21, 2023, paper no. 435.


We propose an image-based elastography method to measure the heterogeneous stiffness inside a cell and its nucleus. It uses a widely accessible setup consisting of plate compression imaged with fluorescence microscopy. Our framework recovers a spatial map of Young's modulus from images of the intracellular displacements. These displacements are measured with a novel optical-flow technique characterised by a Hessian-Schatten norm regularizer. The aim is to favor piecewise-linear displacements because they reproduce solutions to linear elasticity problems well when the underlying modulus is piecewise-constant, as is often the case in cells. Our computational approach is fast enough for long timelapse acquisitions and 3D imaging. It is able to cope with two common pitfalls of biological elastography: high compressibility and small compressions to avoid damage. We show our method is faster and more accurate than the state-of-the-art.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/kesenci2301.html,
AUTHOR="Kesenci, Y. and Boquet-Pujadas, A. and Unser, M. and
	Olivo-Marin, J.-C.",
TITLE="Probing Intracellular Elasticity with Minimal-{H}essian
	Registration",
BOOKTITLE="Proceedings of the Twentieth IEEE International Symposium on
	Biomedical Imaging ({ISBI'23})",
YEAR="2023",
editor="",
volume="",
series="",
pages="",
address="Cartagena de Indias, Republic of Colombia",
month="April 18-21,",
organization="",
publisher="",
note="paper no.\ 435")

© 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved