Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Regularized Interpolation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Regularized Interpolation for Noisy Data

S. Ramani, P. Thévenaz, M. Unser

Proceedings of the Fourth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'07), Arlington VA, USA, April 12-15, 2007, pp. 612-615.


Interpolation is a vital tool in biomedical signal processing. Although there exists a substantial literature dedicated to noise-free conditions, much less is known in the presence of noise. Here, we document the breakdown of standard interpolation for noisy data and study the performance improvement due to regularized interpolation. In particular, we numerically investigate the Tikhonov (quadratic) regularization. On top of that, we explore non-quadratic regularization and show that this yields further improvements. We derive a novel bounded regularization approach to determine the optimal solution. We justify our claims with experimental results.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ramani0701.html,
AUTHOR="Ramani, S. and Th{\'{e}}venaz, P. and Unser, M.",
TITLE="Regularized Interpolation for Noisy Data",
BOOKTITLE="Proceedings of the Fourth {IEEE} International Symposium on
	Biomedical Imaging: {F}rom Nano to Macro ({ISBI'07})",
YEAR="2007",
editor="",
volume="",
series="",
pages="612--615",
address="Arlington VA, USA",
month="April 12-15,",
organization="",
publisher="",
note="")

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved