Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Multiscale Registration
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Iterative Multi-Scale Registration without Landmarks

P. Thévenaz, U.E. Ruttimann, M. Unser

Proceedings of the 1995 Second IEEE International Conference on Image Processing (ICIP'95), Washington DC, USA, October 23-26, 1995, vol. III, pp. 228-231.


We present an automatic sub-pixel registration algorithm that minimizes the mean square difference of intensities between a reference and a test data set (volumes or images). It uses spline processing, is based on a coarse-to-fine pyramid strategy, and performs minimization according to a variation of the iterative Marquardt-Levenberg scheme. The geometric deformation model is a general affine transformation that one may optionally restrict to a rigid-body (isometric scale, rotation and translation), procrustean (rotation and translation) or translational case; it also includes an optional parameter for the linear adaptation of intensity. We present several PET and fMRI experiments and show that this algorithm provides excellent results. We conclude that the multi-resolution refinement strategy is faster and more robust than a comparable single-scale one.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/thevenaz9501.html,
AUTHOR="Th{\'{e}}venaz, P. and Ruttimann, U.E. and Unser, M.",
TITLE="Iterative Multi-Scale Registration without Landmarks",
BOOKTITLE="Proceedings of the 1995 Second {IEEE} International
	Conference on Image Processing ({ICIP'95})",
YEAR="1995",
editor="",
volume="{III}",
series="",
pages="228--231",
address="Washington DC, USA",
month="October 23-26,",
organization="",
publisher="",
note="")

© 1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved