Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Good Splines
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Ten Good Reasons for Using Splines for Signal/Image Processing

M. Unser

Invited talk, Journée "Approximation et Modélisation Géométrique" (SMAI-AFA'08), Paris, French Republic, March 14, 2008.


We argue that cardinal splines constitute an ideal framework for performing signal/image processing—the underlying philosophy being “thing analog, act digital”. We show that multidimensional spline interpolation or approximation can be performed most efficiently using recursive digital filtering techniques. We highlight a number of “optimal” aspects of splines (in particular, polynomial ones) and discuss fundamental relations with: (1) Shannon's sampling theory, (2) linear system theory, (3) wavelet theory, (4) regularization theory, (5) estimation theory, and (6) stochastic processes (in particular, fractals). The practicality of the spline framework is illustrated with concrete image processing examples; these include derivative-based feature extraction, high-quality rotation and scaling, and (rigid body or elastic) image registration.

Slides of the presentation (PDF, 12.9 Mb)

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser0805.html,
AUTHOR="Unser, M.",
TITLE="Ten Good Reasons for Using Splines for Signal/Image Processing",
BOOKTITLE="Journ{\'{e}}e ``Approximation et Mod{\'{e}}lisation
	G{\'{e}}om{\'{e}}trique'' ({SMAI-AFA'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="",
address="Paris, French Republic",
month="March 14,",
organization="",
publisher="",
note="Invited talk")
© 2008 SMAI-AFA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SMAI-AFA. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved