Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Representer Theorems
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Representer Theorems for Sparsity-Promoting ℓ1 Regularization

M. Unser, J. Fageot, H. Gupta

IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 5167-5180, September 2016.


We present a theoretical analysis and comparison of the effect of ℓ1 versus ℓ2 regularization for the resolution of ill-posed linear inverse and/or compressed sensing problems. Our formulation covers the most general setting where the solution is specified as the minimizer of a convex cost functional. We derive a series of representer theorems that give the generic form of the solution depending on the type of regularization. We start with the analysis of the problem in finite dimensions and then extend our results to the infinite-dimensional spaces ℓ2(ℤ) and ℓ1(ℤ). We also consider the use of linear transformations in the form of dictionaries or regularization operators. In particular, we show that the ℓ2 solution is forced to live in a predefined subspace that is intrinsically smooth and tied to the measurement operator. The ℓ1 solution, on the other hand, is formed by adaptively selecting a subset of atoms in a dictionary that is specified by the regularization operator. Beside the proof that ℓ1 solutions are intrinsically sparse, the main outcome of our investigation is that the use of ℓ1 regularization is much more favorable for injecting prior knowledge: it results in a functional form that is independent of the system matrix, while this is not so in the ℓ2 scenario.

@ARTICLE(http://bigwww.epfl.ch/publications/unser1602.html,
AUTHOR="Unser, M. and Fageot, J. and Gupta, H.",
TITLE="Representer Theorems for Sparsity-Promoting $\ell_{1}$
	Regularization",
JOURNAL="{IEEE} Transactions on Information Theory",
YEAR="2016",
volume="62",
number="9",
pages="5167--5180",
month="September",
note="")

© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved