Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Hexagonal Lattices
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

On the Approximation Power of Splines: Orthogonal versus Hexagonal Lattices

D. Van De Ville, T. Blu, M. Unser

Proceedings of the Fifth International Workshop on Sampling Theory and Applications (SampTA'03), Strobl, Republic of Austria, May 26-30, 2003, pp. 109-111.


Recently, we have proposed a novel family of bivariate, non-separable splines. These splines, called "hexsplines" have been designed to deal with hexagonally sampled data. Incorporating the shape of the Voronoi cell of a hexagonal lattice, they preserve the twelve-fold symmetry of the hexagon tiling cell. Similar to B-splines, we can use them to provide a link between the discrete and the continuous domain, which is required for many fundamental operations such as interpolation and resampling. The question we answer in this paper is "How well do the hex-splines approximate a given function in the continuous domain?" and more specifically "How do they compare to separable B-splines deployed on a lattice with the same sampling density?"

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/vandeville0301.html,
AUTHOR="Van De Ville, D. and Blu, T. and Unser, M.",
TITLE="On the Approximation Power of Splines: {O}rthogonal
	{\textit{versus}} Hexagonal Lattices",
BOOKTITLE="Proceedings of the Fifth International Workshop on Sampling
	Theory and Applications ({SampTA'03})",
YEAR="2003",
editor="",
volume="",
series="",
pages="109--111",
address="Strobl, Republic of Austria",
month="May 26-30,",
organization="",
publisher="",
note="")
© 2003 NuHAG. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from NuHAG. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved