Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Generalized Daubechies
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Generalized Daubechies Wavelet Families

C. Vonesch, T. Blu, M. Unser

IEEE Transactions on Signal Processing, vol. 55, no. 9, pp. 4415-4429, September 2007.


We present a generalization of the orthonormal Daubechies wavelets and of their related biorthogonal flavors (Cohen-Daubechies-Feauveau, 9⁄7). Our fundamental constraint is that the scaling functions should reproduce a predefined set of exponential polynomials. This allows one to tune the corresponding wavelet transform to a specific class of signals, thereby ensuring good approximation and sparsity properties. The main difference with the classical construction of Daubechies et al. is that the multiresolution spaces are derived from scale-dependent generating functions. However, from an algorithmic standpoint, Mallat's Fast Wavelet Transform algorithm can still be applied; the only adaptation consists in using scale-dependent filter banks. Finite support ensures the same computational efficiency as in the classical case. We characterize the scaling and wavelet filters, construct them and show several examples of the associated functions. We prove that these functions are square-integrable and that they converge to their classical counterparts of the corresponding order.

@ARTICLE(http://bigwww.epfl.ch/publications/vonesch0702.html,
AUTHOR="Vonesch, C. and Blu, T. and Unser, M.",
TITLE="Generalized {D}aubechies Wavelet Families",
JOURNAL="{IEEE} Transactions on Signal Processing",
YEAR="2007",
volume="55",
number="9",
pages="4415--4429",
month="September",
note="")

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved