Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Interior Tomography
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation

J.P. Ward, M. Lee, J.C. Ye, M. Unser

SIAM Journal on Imaging Sciences, vol. 8, no. 1, pp. 226–247, 2015.


Motivated by the interior tomography problem, we propose a method for exact reconstruction of a region of interest of a function from its local Radon transform in any number of dimensions. Our aim is to verify the feasibility of a one-dimensional reconstruction procedure that can provide the foundation for an efficient algorithm. For a broad class of functions, including piecewise polynomials and generalized splines, we prove that an exact reconstruction is possible by minimizing a generalized total variation seminorm along lines. The main difference with previous works is that our approach is inherently one-dimensional and that it imposes less constraints on the class of admissible signals. Within this formulation, we derive unique reconstruction results using properties of the Hilbert transform, and we present numerical examples of the reconstruction.

@ARTICLE(http://bigwww.epfl.ch/publications/ward1501.html,
AUTHOR="Ward, J.P. and Lee, M. and Ye, J.C. and Unser, M.",
TITLE="Interior Tomography Using {1D} Generalized Total Variation.
	{P}art {I}: {M}athematical Foundation",
JOURNAL="{SIAM} Journal on Imaging Sciences",
YEAR="2015",
volume="8",
number="1",
pages="226--247",
month="",
note="")

© 2015 SIAM. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SIAM. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved