Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Selfsimilar Processes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Complex-Order Scale-Invariant Operators and Self-Similar Processes

A. Amini, J. Fageot, M. Unser

Applied and Computational Harmonic Analysis, vol. 72, paper no. 101656, 28 p., September 2024.


In this paper, we perform the joint study of scale-invariant operators and self-similar processes of complex order. More precisely, we introduce general families of scale-invariant complex-order fractional-derivation and integration operators by constructing them in the Fourier domain. We analyze these operators in detail, with special emphasis on the decay properties of their output. We further use them to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst exponents. These random processes are expressed via their characteristic functionals over the Schwartz space of functions. They are therefore defined as generalized random processes in the sense of Gel’fand. Beside their self-similarity and stationarity, we study the Sobolev regularity of the proposed random processes. Our work illustrates the strong connection between scale-invariant operators and self-similar processes, with the construction of adequate complex-order scale-invariant integration operators being preparatory to the construction of the random processes.

@ARTICLE(http://bigwww.epfl.ch/publications/amini2401.html,
AUTHOR="Amini, A. and Fageot, J. and Unser, M.",
TITLE="Complex-Order Scale-Invariant Operators and Self-Similar
	Processes",
JOURNAL="Applied and Computational Harmonic Analysis",
YEAR="2024",
volume="72",
number="",
pages="",
month="September",
note="paper no.\ 101656")

© 2024 Elsevier. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved