Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Geometric Transformation of Images
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Geometric Transformation of Images

Splines

Principal Investigators: Stefan Horbelt, Maria Arrate Muñoz Barrutia

Perspective texture mapping of a checkerboard pattern. (a) Point sampling of the source image; (b) new least-squares solution.

Summary

We have designed a series of algorithms to implement geometric transformations of images in a way that minimizes the loss of information. The solutions are optimal in the least-squares sense.

Introduction

Geometric transformations play an important role in biomedical image processing. Image translations, rotations, and/or scaling, are required for data visualization, re-slicing of volumetric PET or MRI data sets, and image registration. The problem with most conventional interpolation procedures is that they produces noticeable artifacts (blocking, smoothing, and sometimes aliasing or ringing). Since image quality is a key concern, it is important to investigate techniques that result in less degradation.

The goal of this project is to develop new spline-based methods for implementing geometric transformations of images with the highest-possible quality. A special case of interest is the generation of a multiresolution representation of images (pyramids) for multiscale processing. Geometric methods are also very relevant for three-dimensional data visualization, and for texture mapping. Our algorithms are designed to be optimal in the least-squares sense, which is a principle that had not been used before in this particular context.

Main Contribution

We have proposed a new, iterative texture-mapping algorithm based on the idea of successive refinement. Our methods is optimal in a well-defined sense; it can deal with rather general (reversible) warping functions. Our new method compares favorably with the standard techniques in terms of image quality. It tends to produce sharper images while minimizing aliasing artifacts.

We have developed efficient algorithms for computing image pyramids (multiresolution approximation) that are optimal in the l p -norm. The case p = 1 was found to be of particular interest because it tends to simplify images while reducing ringing artifacts.


Collaboration: Prof. Michael Unser

Period: 1997-2003

Funding:

Major Publications

  • , , , Least-Squares Image Resizing Using Finite Differences, IEEE Transactions on Image Processing, vol. 10, no. 9, pp. 1365–1378, September 2001.
  • , , , Texture Mapping by Successive Refinement, Proceedings of the 2000 Seventh IEEE International Conference on Image Processing (ICIP'00), Vancouver BC, Canada, September 10-13, 2000, vol. II, pp. 307–310.
  • , , , , Spline Kernels for Continuous-Space Image Processing, Proceedings of the Twenty-Fifth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'00), Istanbul, Turkey, June 5-9, 2000, vol. IV, pp. 2191–2194.
  • , , , lp-Multiresolution Analysis: How to Reduce Ringing and Sparsify the Error, IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 656–669, June 2002.
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved